
Nordic Journal of African Studies 19(1): 1–22 (2010) 

 1

 

Finite State Methods in Morphological 
Analysis of Runyakitara Verbs  

Fridah KATUSHEMERERWE 
Makerere University, Uganda 

& 
Thomas  HANNEFORTH 

Potsdam University, Germany  
 
 
ABSTRACT 
 
Previously, there has been a lack for an automatic analyser and generator for the word forms 
of Runyakitara.   In this paper, we present a computational model for  grammatical 
Runyakitara verbs.  This model, RUNYAGRAM, is based on freely-available open-sourced 
finite-state methods and, in particular, the fsm2 interpreter.  It captures the morphotactic 
structures with non-recursive context-free grammars supported by fsm2 and morpho-
phonological alternations with a finite composition of commonly used context-dependent 
string rewriting rules.  Their combination results into a finite state transducer that can be 
exported and used in numberless software-developing platforms.  The obtained transducer is 
an important building-block that can be employed in comprehensive morphological analysers, 
syntactic parsers, spell-checkers, text-to-speech synthesizers, and machine translation 
systems.  Currently, 86% of the verb forms are recognized.  It is possible to increase the 
coverage, or alternatively, to adapt the approach of the RUNYAGRAM system to related 
languages. 
 
Keywords: morphological analysis, finite state methods, Runyakitara verb. 
 
 
1. INTRODUCTION 
 
One of the core enabling technologies required in natural language processing 
applications is a morphological analyzer. It is an established fact in 
computational linguistics that a morphological analyzer is a starting point for 
many natural language processing applications (Pretorius & Bosch, 2003; Yona 
& Wintner, 2005). 

Computational morphology deals with automatic word-form recognition and 
generation. The general challenges posed by a computational morphological 
analyzer, as described by Prestorious and Bosch, (2003), are twofold: 

• Morphemes that make up words cannot combine at random, but are 
restricted to certain combinations and orders.  A morphological analyzer 
needs to know which combinations of morphemes (morphotactics) are 
valid.  



Nordic Journal of African Studies 

 2

• Morphemes may be realized in different ways depending on their context. 
A morphological analyzer needs to recognize the morphophonological 
changes between lexical and surface forms (morphophonological 
alternation). Automatic morphological analyzers and generators must take 
into consideration the above issues. 

 
Comprehensive morphological analyzers are available for well documented 
languages such as English, Swedish, German, Arabic, and Finnish (Karttunen & 
Beesley, 2005:77). Considerable work has also been achieved in employing 
finite state methods for Bantu language analysis: the Kiswahili morphological 
analyzer (Hurskainen, 1992; 1996; 2004); the Zulu analyzer prototype (Pretorius 
& Bosch, 2003), Lingala verb morphology (Karttunen, 2003), Ekegusii verb 
morphology (Elwell, 2005), Kinyarwanda (Muhirwe & Trosterud, 2008), and 
Setswana verb morphology (Pretorius, Berg, & Pretorius, 2009).  

However, given the fact that Bantu languages are more than five hundred in 
number, almost all are still not treated. Although Bantu languages are classified 
as largely agglutinative and exhibit significant inherent structural similarity, they 
differ substantially in terms of their phonological features implying that each 
Bantu language requires an independent morphological analyzer. 

Runyakitara is one of those under-resourced Bantu languages with no 
computational morphology. Bernsten (1998) splits Runyakitara into four major 
dialects: Runyankore, Runkiga, Runyoro, and Rutooro. Guthrie (1967) groups 
these four dialects into two languages belonging to Narrow Bantu branch of the 
Niger-Congo family, Nyankore-Kiga (E.13) and Nyoro-Ganda (E.11). For 
purposes of this paper, Runyakitara will be taken to mean two major language 
clusters mentioned above: Runyoro-Rutooro and Runyankore-Rukiga, denoted 
by R-R in the following.   

Runyakitara is spoken by approximately six and half million (6,500,000) 
people in nineteen districts of Western Uganda. As a major language in Uganda, 
some parts of Tanzania and Democratic Republic of Congo, it is important that 
R-R is given computational attention because it has a large number of speakers, 
a language of media in western Uganda (two regular newspapers – one online) 
and a rich history and culture which should be preserved. Besides the language 
is a medium of instruction in lower levels of primary education in Western 
Uganda and we shall consider how computational efforts may add value to the 
language education. The morphology of a verb in R-R, as has been stressed by 
other Bantu researchers, (Hurskainen, 1992; Elwell, 2005) is one of the complex 
morphological systems known which means that it needs special attention. 
 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 3

 
2. RUNYAKITARA VERB MORPHOLOGY AND THE 

COMPUTATIONAL CHALLENGE 
 
A verb in a typical Bantu language will take on many prefixes and suffixes. The 
Runyakitara verb morphology poses the following challenges to computational 
modeling: a. number of morphemes, b. morpheme order, c. morpheme 
combination, d. allomorphs, and e. vowel harmony. These are discussed in the 
sub-sections below. 
 
 
2.1 NUMBER OF MORPHEMES INVOLVED 
 
The Bantu verb template described in many studies suggests about 8 to 15 
morpheme slots as follows: 
 

Slot  1 2 3 4 6 7 8 9 

Meaning Pre-
initial 

Initial  Post-
initial 

Tense 
marker 

OM Verbal base Final  Post-
final 

Morpheme  NEG SM NEG Tense  Object 
marker 

Root  Verb 
ext. 

Mood, 
aspect, 
NEG 

 

Table 1. Bantu Verb Template (Nurse  & Philippson, 2003). 
 
The above generic template raises many questions if one considers it with 
respect to R-R morphology: what is considered a morpheme on the template? If 
verb extension, (in Slot 7) is a morpheme, does it mean that such extensions as 
causative, applicative, passive, etc are allomorphs of the same morpheme? This 
and many other questions prompted us to devise an R-R verb template to cater 
more specifically for a number of morphemes present in the language. 

There are many morphemes involved in the formation of R-R verbs; 
therefore, it is important to expand the template. These can be broadly classified 
as prefixes, (morphemes left of Slot 0) root (Slot 0) and suffixes (morphemes 
after Slot 0). The following template shows morphemes involved in the 
formation of Runyakitara verbs: 



N
ordic Journal of African Studies 

 
4

 

Pf2 

 

ga 
 

3 

Pf1 

 

ho 
mu 
yo 
 

past 

ire 

subj 

e 

2 

Verb end (VE) 

Ind 

a 

Rev 

uk 
ur 
uur 

Stat 

ek 
ik 

Int 

erer 
irir 

Pas 

w 
ebw 
ibw 

Rec 

an 

Apl 

er 
ir 

1 

Verb extension morphemes (VEXT) 

Ca 

es 
is 
iz 
y 

0 

R 

 

 

-1 

Asp 

ref 

e 

Op2 

18 

-2 

Object pronous 

Op1 

18 

Rp 

ka 

ff 

ria 

Pf 

aa 

 

 

Hab 

Ø 

-3 

Tense/aspect markers 

Inf 

ku 

-4 

Ng 2 

 

ta 

-5 

Sp  

 

18 

-6 

Asp 

 

ni 

-7 

Ng1 

 

ti 

Table 2. Runyakitara Verb Template. 

Note: Slot 0 represents root, to the right of 0 are suffixes to the root. Slot 1 is for verb extensions as: Ca – causative, Apl – 
applicative, Rec – reciprocal, Pas – passive, Int – intensive, Stat – stative, Rev – reversive. Slot 2 represents Verb end: Ind – 
indicative, subj – subjunctive, past – past tense. Slot 3 indicates post final morphemes: pf1 – post-final 1; pf2 – post-final2. On the left 
of zero, -1 Asp – aspect, -2 – object pronouns, -3 Tense/aspect markers, -4 – Ng2 – Negative 2, -5 Sp – subject prefix; -6 Asp – 
aspect; -7 Ng1 – Negative 1. For a more description and examples, refer to Appendix A. 
 

 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 5

 
Runyakitara has typical characteristics of template morphology as it is outlined 
by Spencer. As observed by Spencer (1991), template morphology poses a 
computational challenge. According to Spencer, template morphology is a 
morphological system where a verb stem or root consists of obligatory affix(es) 
as well as a set of optional affix(es). The combinations of morphemes make 
automatic analysis difficult because one has to sort out first which affixes fit to 
the root to form specific verb forms.  

Adding to the number of morphemes involved, subject and object pronouns 
mark agreement with the noun classes in question. In case the subject is not 
included, they serve as subject and object pronouns. These markers appear on 
the verb root as prefixes to the root. R-R has eighteen (18) noun classes, 
therefore subject and object pronouns add up to 18 in each case. In addition, R-R 
is a type 3 language according to the classification given by Maho (2007), which 
means that it allows two or more objects in the construction.  Evidence in 
Runyakitara shows that the language can have a double object construction, that 
is, a verb can have a marker for both direct and indirect objects in the same 
construction.  An example in this case is mu-mu-n-kwat-ire (you grab/hold him 
for me), where mu-n indicate double objects representing him and me. This will 
add to the number of morphemes, indicating that a number of morphemes is 
large enough to pause a challenge. 
 
 
2.3 MORPHEME COMBINATION 
 
Much as some studies have been carried out on combination of morphemes in 
Bantu languages, (Hayman, 2007) limited research is available for Runyakitara 
morpheme combination.  This is specifically in reference to verb extensions. As 
earlier noted by Hayman, (2007) verb extensions are difficult to analyze mainly 
because of various functions and also, they are numerous and often occur in long 
successions. Runyakitara has seven (7) verbal extensions which can be added to 
the root individually or in combination. For example, one can have a verb with 
verb extensions such as: 

reeb-a (see) 
reeb-es-a (see with),  
reeb-an-a (see each other),  
reeb-w-a (be seen),  
reeb-es-an-a (make each other to see),  
reeb-an-is-a (make to see each other), 
reeb-es-an-is-ibw-a (be made to make them see each other).  

 
In the last example, [es, an, w, is, ibw] are all verb extensions playing different 
roles.  The order of causative morphs es and is in the above example is different 



Nordic Journal of African Studies 

 6

and there is no study available that has established the combination of verbal 
extensions in Runyakitara, and the order in which they can follow one another. 
2.2 MORPHEME ORDER 
 
Although the Bantu verb template is presumed to present a fixed order of 
morphemes, and provides Slot 4 in Table 1, for example, as a slot for tense 
aspect markers, some morphemes in Runyakitara violate the order. Specific 
cases are: progressive ni, reflexive e and past ire which violate the order of 
Bantu template. As indicated on Runyakitara template in Table 2, ni comes 
before the subject marker in the construction while other tense/aspect markers 
follow the subject marker e.g.  

ni-ba-mu-reeb-a (they are seeing him) 
ba-ka-mu-reeb-a (they saw him [last year or some months back]).  
Ba-mu-reeb-ire (they saw him [yesterday])  

 
In the above verb constructions, ni, ka, and ire are tense/aspect markers but 
appear in different positions in respect to the root.  

Also, the order of verb extensions on the template does not necessarily mean 
that it is the order of their construction. That is to say, extensions can attach to 
verbs depending on the argument structure. So, there is not fixed order in which 
they are supposed to appear in the construction of the verb.  For example, a verb 
root  

reeb-a (see)  
reeb-es-a (see with)  
reeb-an-a (see each other) 
reeb-es-an-a (make each other to see)  
reeb-an-is-a (make … to see each other)  
reeb-an-is-ibw-a (be made to make … see each other).  
reeb-er-a (see for) 
reeb-er-an-a (see for each other) 

 
All this indicates that there is a lot of flexibility regarding which morphemes 
precede and follow one another because is and es are all causatives. 
 
 
2.4 ALLOMORPHY 
 
Runyakitara has various allomorphs, that is, different realizations of the same 
morphemes. A case in point here is a causative morpheme which has four 
different realizations [es/is/iz/s/y]. Applicative, passive, stative and reversive 
morphemes are no exception. All these pose a challenge to computational 
modeling. 
 
 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 7

2.5 VOWEL HARMONY 
 
Katamba, (1984) analyses vowel harmony of verb extensions in Luganda, a 
language closely related to Runyakitara. His analysis, which classifies the 
vowels involved in harmony as mid and nonmid gives an understanding of 
existence of vowel harmony in the language but does not aid much when it 
comes to formalizing morphemes for computational purposes. The reason is that 
it is difficult to identify the location of mid and nonmid vowels in the string. The 
suggestion provided by Morris and Kirwan (1972) of a penultimate syllables is 
useful here. Penultimate syllable is a syllable preceding the final. Penultimate, 
which means before last, can easily aid one to locate the vowel in question. For 
example, in the word bo-ro-go-ta, (flow of water) the penultimate is ‘go’. This 
aided in understanding that when a penultimate syllable is e, o, the causative 
extension will be es. On the other hand, when the penultimate syllable is a, i or 
u, the causative extension will be is or iz. The same applies to applicative, 
intensive and stative.  

Given the nature of Runyakitara morphology, it was important to carefully 
select the formalization approach appropriate to the structure. Therefore, a 
phrase structure grammar was identified to appropriately handle the 
concatenative nature of Runyakitara morphology. Rules proposed by Selkirk 
(Spencer, 1991), were applied, written as W+A  for suffixing; and A+W for 
prefixing.  However, it was clear that, the rules Selkirk proposed only account 
for concatenative nature of morphology. It was important therefore to also think 
of the way of handling morpho-phonological and orthographical processes. 
However, they are helpful for Runyakitara concatenative morphology. 
 
 
3. FORMALIZATION AND IMPLEMENTATION 
 
Given the nature of Runyakitara morphology, it was important to carefully select 
an appropriate approach. The concatenative nature of Runyakitara morphology 
can be captured with Phrase Structure Grammar (PSG) along the lines of Selkirk 
(Spencer, 1991) who proposes phrase-structure like rules written as W+A for 
suffixing and A+W for prefixing. However, it was clear that the rules Selkirk 
proposed only account for concatenative morphology. It was important therefore 
to also think of the way of handling morpho-phonological and orthographical 
processes. Because recursion is not needed, we describe both the concatenative 
rules and phonological processes in the framework of finite-state acceptors 
(FSA) / transducers (FST). Our approach relies heavily on the closure properties 
of these automata under intersection, composition, and substitution (see 
Hopcroft & Ullman, 1979, Kaplan & Kay, 1994). 

The implementation is done using fsm2 (Hanneforth, 2009), a scripting 
language within the framework of finite state technology. Finite-state 
technology is considered the preferred model for representing the phonology and 



Nordic Journal of African Studies 

 8

morphology of natural languages (Wintner, 2008). The model has been used to 
computationally analyze natural languages such as English, German, French, 
Finnish, Swahili, to mention a few cases (Beesley and Karttunen, 2003), and its 
main advantage is that it is bidirectional – it works for both analysis and 
generation. It is on this basis that the technology was selected to be applied on 
the morphological grammatical analysis of R-R. 

Fsm2 was chosen as a resource tool for a morphological grammar of R-R 
due to a number of reasons:  

• It supports a full-set of algebraic operations defined on both unweighted 
and weighted finite state automata and weighted finite state transducers 
(Hanneforth, 2009). Algebraic operations are useful to design complex 
morphological analyzers in a modular way.  

• fsm2 supports a number of equivalence transformations which change or 
optimize the topology of a weighted automation without changing its 
weighted language or relation, that is an automata, can be minimized, 
determinized, optimized etc;  

•  fsm2 uses symbol signatures which map symbols to numbers that are 
internally recognized by the automata. Symbol signatures are useful in 
language modeling since every word in a language constitutes an alphabet 
symbol, and a task of a developer is to define symbols that represent 
morpheme and their categories. 

•  fsm2 provides an efficient way of compiling morphological grammars 
where the co-occurrence of roots and inflectional affixes common in 
Runyakitara is easily accounted for.  

• fsm2 is open-source software. The source code can be downloaded at 
www.fsmlib.org. 

 
fsm2 is able to load lexicons, grammars and replace rules defined by the 
morphology developer. It is able to automatically transform various rule formats 
into transducers. 
 
 
3.1 THE STRUCTURE OF RUNYAGRAM 
 
RUNYAGRAM is built on a modular basis comprising of a special symbol 
module/file, a grammar module and a replacement rule module. The three are 
composed together, and the result is a single finite state transducer.  

The following diagram demonstrates the overall architecture of 
RUNYAGRAM: 
 
 
 
 
 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 9

Finite-state transducer for 
Runyakitara 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. Sketch of the architecture of RUNYAGRAM. 
 
The output RUNYAGRAM generates can be used as an input for other 
applications such as: 

• a spell checker for Runyankore-Rukiga 
• a dictionary since RUNYAGRAM outputs lemmas 
• a syntax analyzer for Runyakitara 
• a language learning system for vocabulary and grammar depending on 

how it can be developed.  
 
The remaining subsections illustrate the construction of the subanalyzer for 
verbs in Runyakitara. The subanalyzer for nouns is created in a similar fashion. 
 
 
3.2 SYMBOL SIGNATURE 
 
Like the AT&T Lextools (see Roark and Sproat, 2007), fsm2 uses a symbol 
signature to define the basic entities of the grammatical description. Fig. 2 
shows some sample entries. 
 
  Letter  a b c d e f g h i j k l m n o p q r s t u v w x y z 
  Category:  VERB_ROOT_SIMPLE1 Simple1 
  Category:  VERB_PREF_TENSE Tense 
 

Figure 2. Sample entries of the RUNYAGRAM symbol signature. 
 
The entries are of one of two types: 

1. Supertype – subtype definitions 
2. Category definitions. A category consists out of a category name and 

a (perhaps) empty list of features. 
 
The first line in Fig. 2 defines Letter as the supertype of the subtypes a, b, c, 
etc. The following lines define two categories VERB_ROOT_SIMPLE1 and 

Symbol signature 

Grammar module 

Rewriting rules module 



Nordic Journal of African Studies 

 10

VERB_PREF_TENSE, with features Simple1 and Tense defined elsewhere in the 
signature. Features themselves are again treated as supertypes, having their 
subtypes as their values. 

Each symbol in the signature – whether type or category name – is mapped 
by fsm2 to a unique integer used internally in the compiled automata. 
  
 
3.3 WORD GRAMMAR  
 
For specifying the morpheme order, we do not use the “classical” continuation-
class mechanism of Koskenniemi (1984), but instead employ a context-free 
word grammar for that purpose1. We think that using a grammar  is a much 
more natural way of defining orderings and groupings of elements compared to 
the continuation-class method which basically amounts to hand-coding a finite 
state automaton within the lexicon. Since the generative capacity of context-free 
grammars is beyond the one inherent in finite-state automata, we restrict 
ourselves to a subset of context-free grammars along the lines of quasi-context 
free grammars by Mohri & Pereira (1996). This subset may include left- or right 
recursive rules, but rules out all forms of center-embedding. 

In the fsm2 framework, grammar rules have the form A → β, where A is a 
designated nonterminal symbol and β is an arbitrary regular expression (which 
may even use intersection or negation). 

The compilation approach is based on an ordering of the nonterminals of the 
grammar, creating finite-state automata (FSA) for each grammar symbol and 
substituting the FSA for the individual grammar symbols into the rules right-
hand sides in the previously computed order. In the grammar rules right-hand 
sides, morphemes of Runyakitara are interleaved with grammatical categories 
bearing grammatical information for the morphemes preceding them.  

The grammar module consists of a set of quasi context-free rules accounting 
for the concatenative nature of Runyakitara morphology. The grammar contains 
a large number of rules, but we present a sample, exemplifying the principles 
underlying the overall organization of the grammar. We follow the approach of 
taking a verb from a minimum number to a maximum number of morphemes. 
This was done to ensure that every verb form is accounted for. Fig. 3 shows 
some (simplified) sample rules of the verb sub-grammar. 
 

                                                 
1  A context-free grammar (see Hopcroft & Ullman, 1979) is a 4-tuple 〈Σ,N,S,P〉 where Σ is 
a finite set of alphabet symbols, N is a finite set of non-terminal symbols (phrase symbols), 
S ∈ N is the start (sentence) symbol of the grammar and P is a set of rules A → β, where A  ∈ 
N and  β ∈ (N∪Σ)*. That means: the left-hand side of a grammar rule is restricted to a single 
phrasal symbol, whereas the right-hand side can contain an arbitrary combination of alphabet 
and phrasal symbols. 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 11

   # Verb structure rules 
 
   # Minimum number of morphemes a verb takes  
   [VERB]    →   [VROOT] [VEND]  
 
   # Maximum number of morphemes a verb takes 
   [VERB]     →  [VPREFNEG] [VPREFSP] [VPREFTM] [VPREFOP] \ 

     [VROOT] [VEXT] [VEND] [POSTV] 
 

   # Morpheme insertion rules (morphemes are in bold‐face)  
   [VROOT]    →   (reeb|teer|kwat|shom)\ 
           VERB_ROOT_SIMPLE Simple=simpleverb] 
   [VEND]    →   a  [VERB_END_IND Ind=mood] 
   [VPREFNEG]  →   ti  [VERB_PREF_NEG Neg=polarity] 
   [VPREFSP]   →   a  [VERB_PREF_SPM3S Spm3s=agrmt3] 
   [VPREFTM]   →   aa  [VERB_PREF_PERF Perf=perfective] 
   [VPREFOP]   →   bu  [VERB_PREF_OPM13 Opm13=objectprefix13] 
   [VEXT]    →   es   [VERB_PREF_CAUS Caus=causative1] 
   [POSTV]    →  mu  [VERB_SUFF_POST Post=postverbal] 
 
Figure 3. Sample rules of the verb grammar (Nonterminals are enclosed in square brackets: 
[VPREFNEG] = verb prefix negative; [VPREFSP] = verb subject prefix; [VPREFTM] = verb 
prefix tense marker; [VPREFOP] = verb prefix object marker; [VROOT] = verb root; [VEXT] 
= verb extension; [VEND] = verb end; [POSTV] = Verb suffix post verbal. Symbols after 
morphemes in bold-face indicate categorical information. | means disjunction.) 
 
To compile a grammar like the one in Fig. 3 into an unweighted finite-state 
acceptor, the grammar rules are converted into a directed graph according to the 
following principle: for all nonterminals A and B, if there exists a rule A → … B 
…, then the graph contains an edge A → B. After this preprocessing step, a 
topological order (cf. Cormen et al., 2001) of the resulting graph is computed 
(in case the graph is cyclic – which means that the underlying grammar is 
recursive – the (acyclic) component graph of all strongly connected components 
is used instead2). All the right hand sides of all grammar rules which share the 
same left-hand side are disjunctively combined and for every nonterminal A we 
compute a finite-state acceptor FSA(A) representing all the right-hand sides for 
A. In a final step, each nonterminal A is substituted by its corresponding FSA in 
reverse topological order, beginning with the FSAs for the grammar rules which 
do not have further nonterminals in their right-hand sides. Note that the 
grammar need not be in a special format (right-linear etc.) to apply this 
procedure. 

To illustrate these steps, Fig. 4a shows the FSA for nonterminal VERB, while 
Fig. 4b shows the FSA for VROOT according to our grammar fragment. The FSA 
                                                 
2  At this stage, also the regularity check takes place: all nonterminals in a strongly 
connected component (there may be more than one in case of mutual recursion) must occur 
either right- or leftlinear in the subgrammar restricted to these nonterminals. This for example 
rules out rules like S → a S b | c which generates a non-regular language. 



Nordic Journal of African Studies 

 12

for VROOT of Fig. 4b is substituted into the one in Fig. 4a, replacing the two 
occurrences of VROOT (transitions 0 → 1 and 5 → 6). All other symbols in Fig. 
4a are replaced in a similar way by their corresponding automata, yielding a 
finite-state acceptor representing the whole grammar fragment. 
 

 
a) 
 

 
b) 
 

Figure 4. FSAs corresponding to grammar rules of Fig. 3. a) FSA for VERB, b) FSA for 
VROOT. 
 
The grammar fragment in Fig. 3 accounts for verb forms like teera (beat), reeba 
(see), kwata (catch) and shoma (read). However, we need also to cater for 
shutama (sit), gyenda (go), etc, which are not indicated in the fragment. The 
grammar fragment is simplified since it would be computationally too expensive 
to include the complete set of Runyakitara verb stems, because it would result in 
grammars with several ten thousand rules. We therefore partitioned the set of 
verb stems into eight equivalence classes, each class containing all verb stems 
which participate in the same word-grammatical constructions and represented 
by a unique symbol in the grammar. After compiling the word grammar into a 
finite-state acceptor AG, a final processing step then substitutes each equivalence 
class denoting symbol by the set of its corresponding verb roots. This also 
simplifies adding new verb roots, since the grammar automaton remains 
unchanged and only the final substitution has to be recomputed. Nevertheless, 
the compilation of the grammar with approx. 330 rules with subsequent 
substitution takes less than a quarter of a second on a modern CPU, resulting in 
a finite-state acceptor with ≈ 800 states and ≈ 1,200 transitions. 

The language (in the technical sense) generated by the grammar is still a set 
of morpheme concatenations forming strings but some are still abstract 
concatenations (morphotactics) without proper phonological and orthographical 
representation. Fig. 5 shows some strings described by the grammar. 
 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 13

 a   [VP_SPM3S Spm3s=agrmt3s] 
aa   [PERF Perf=perfective] 

  bu  [VP_OPM13 Opm13=agrt13]  
  reeb  [VERB_ROOT_SIMPLE] 
  a  [VERB_END End=indicative] 
 
  a  [VP_SPM3SSpm3s=agrmt3s]  
  aa  [PERF Perf=perfective] 
  bu  [VP_OPM13 Opm13=agrt13]  
  reeb  [VERB_ROOT_SIMPLE] 
  a  [VERB_END End=indicative]  
  mu  [POST Post=postverbial] 
 
Figure 5. Some elements of the language generated by the verb grammar (morphemes are in 
bold face, strings like End=indicative indicate feature-value pairs). 
 
Both a‐aa‐bu‐reeb‐a and aa‐bu‐reeb‐a‐mu are valid underlying forms in 
Runyakitara, representing correct grammatical information, but are not correctly 
spelt and well pronounced words. The grammatical forms are yaabureeba and 
yaabureebamu. This calls for a change in the first a to y.  

To deal with this kind of allomorphic variation, we switch from the Item-
and- Arrangement model inherent in the grammar approach to a more process-
oriented Item-and-Process model (see Hockett, 1954 for a description of these 
models). 
 
 
3.4 CONTEXT-DEPENDENT REWRITING RULES:  
 MORPHO-PHONOLOGICAL AND ORTHOGRAPHICAL RULES 
 
Rewriting rules cover morpho-phonological and orthographical issues and are of 
the abstract form: 
  

α  →  β  /  γ  _  δ 
 
This means that an instance denoted by α is replaced by an instance β, if α is 
preceded by a γ and followed by a δ. It is well-known (Johnson, 1972, Kaplan & 
Kay, 1994) that rules of this kind stay within the realm of regular devices if 
certain conditions apply: (i) α, β, γ and δ must denote regular languages and (ii) 
rules are not allowed to apply on their own output. 

For example, the replacement rule 
 
a  → y  /  _  [VP_SPM3S Spm3s=agrmt3s] aa [PERF Perf=perfective] 

 
states that a is replaced by y, whenever a (a verb prefix marker for third person 
singular) occurs before aa (verb prefix marker for perfective). This kind of rule 
will change a-aa-reeb-a to y-aa-reeb-a (he has seen), a well formed R-R word. 



Nordic Journal of African Studies 

 14

We developed a set of 34 context-dependent replacement rules for R-R verb. 
The rules in this category are able to delete, substitute, and insert symbols in the 
string as long as the context is clearly defined. Each replacement rule RRi – 
which corresponds to an infinite regular relation (see Kaplan & Kay, 1994) –  is 
compiled into a finite-state transducer, and all resulting rule transducers are in 
turn composed resulting in one big transducer representing all the rules 
simultaneously (ο denotes composition): 
 

RR   =def   RR1 ο RR2  … ο … RRk 
 
In terms of computational complexity, compiling these kinds of rules is the most 
expensive step of the whole construction3. Compilation needed approx. 1.5 
seconds, yielding a finite transducer RR with ≈ 170 states and ≈ 93,000 
transitions. 

To apply the replacement rules to the strings generated by the grammar, both 
finite-state machines are composed: 
 

AG   ο  RR 
 
All the allomorphic changes performed by the combined rule transducer RR 
manifest themselves on the output tape of AG  ο RR. But these changes have to 
occur at the surface, input level. We achieve the desired effect by inverting the 
transducer, that is, by switching input and output tape. But before doing so, we 
have to get rid of the categorical information (introduced in the stem and affix 
lexicons) still present on both tapes of the transducer. For that purpose, we 
define a simple unconditional rewriting rule which replaces each category by ε, 
the empty string, effectively deleting all categories: 
 

[<Category>]  →  ε 
 
Here <Category> is a special meta-symbol, denoting all the grammatical 
categories defined in the symbol signature.  

The transducer for the Runyakitara verb morphology is then defined as 
follows (-1 denotes inversion): 
 

( AG   ο RR ο  ([<Category>]  → ε) ) -1 
 
This transducer maps Runyakitara verb forms (incorporating all the allomorphic 
changes) to sequences of underlying forms interleaved with categorical 
information about these morphemes (see the next section for example output). 
 

                                                 
3  This is due to the various complementation operations for restricting the replacements to 
the correct contexts (P-iff-S-operator, see Kaplan & Kay, 1994). 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 15

 
3.5 SAMPLE OUTPUT  
 
The output of the system includes morphemes, their categories and features. Fig. 
6 shows some sample output. 
 
mukakubaasa:  mu   [VERB_PREF_SPM2P Spm2p=agrmt2p] 

ka   [VERB_PREF_FPAST Fpast=remotepast] 
ku   [VERB_PREF_OPM15 Opm15=agrt15] 
baas   [VERB_ROOT_SIMPLE Simple=simpleverb] 
a   [VERB_END_IND Ind=mood] 

 
mukakubaaga:   mu   [VERB_PREF_SPM2P Spm2p=agrmt2p] 

ka   [VERB_PREF_FPAST Fpast=remotepast]  
ku   [VERB_PREF_OPM15 Opm15=agrt15] 
baag   [VERB_ROOT_SIMPLE Simple=simpleverb] 
a   [VERB_END_IND Ind=mood] 

 
zizigyegyenesa:  zi  [VERB_PREF_SPM10 Spm10=agrmt10] 

  [VERB_PREF_PRESENT Present=habitual] 
zi  [VERB_PREF_OPM10 Spm10=agrt10]  
gyegyen [VERB_ROOT_SIMPLE1 Simple1=simpleverb1] 
es  [VERB_EXT_CAUS Caus=true] 
a  [VERB_END_IND Ind=mood] 

 
zizigyegyenera:  zi  [VERB_PREF_SPM10 Spm10=agrmt10] 

  [VERB_PREF_PRESENT present=habitual] 
zi  [VERB_PREF_OPM10 Spm10=agrt10] 
gyegyen [VERB_ROOT_SIMPLE1 Simple1=simpleverb1] 
er  [VERB_EXT_LOC Loc=prep] 
a  [VERB_END_IND Ind=mood] 

 
zizigyegyenera:  zi  [VERB_PREF_SPM10 spm10=agrmt10] 

  [VERB_PREF_PRESENT Present=habitual] 
zi  [VERB_PREF_OPM10 Opm10=agrt10] 
gyegyen [VERB_ROOT_SIMPLE Simple1=simpleverb1] 
er  [VERB_EXT_APPL Appl=prep] 
a  [VERB_END_IND Ind=mood] 

 
zizigyegyenerera:zi  [VERB_PREF_SPM10 Spm10=agrmt10] 

  [VERB_PREF_PRESENT Present=habitual]  
zi  [VERB_PREF_OPM10 Opm10=agrt10]  
gyegyen [VERB_ROOT_SIMPLE Simple1=simpleverb1] 
erer  [VERB_EXT_INT Int=degree] 
a  [VERB_END_IND Ind=mood] 

 
Figure 6. Sample output of RUNYAGRAM. 

 
From the above output, taking the first word as an example, mu-ka-ku-baas-a 
(you managed it; ‘tense starts from last month onwards’) has morphemes mu- 



Nordic Journal of African Studies 

 16

serving as subject prefix marker for class two and it is a plural marker serving 
agreement function; ka- is a tense marker in remote past, ku- is an object prefix 
marker for class 15 also serving as agreement, baas- is a verb root for simple 
verbs, and -a is a verb end for indicative mood.  

A regular verb in Runyakitara outputs up to fifty thousand (50,000) forms. 
The fsm2 script for creating the verb subanalyzer can be found in Appendix B. 
 
 
4. TESTING 
 
Testing is one of the complex tasks in morphological analyzer development 
(Beesley and Karttunen, 2003), therefore it needs a lot of care and patience. One 
of the important aspects of fsm2 is the testing functionality to aid developers test 
and debug morphological analyzers. The fsm2 testing functionality can be 
described as: 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Testing process in fsm2. 
 
Applied to Runyakitara, a list of 3971 Runyankore-Rukiga verbs was extracted 
from the dictionary and a Runyakore orthography reference book (Taylor, 
1985). That constituted our testing raw material. Using the lookup operation 
provided by fsm2, the words were looked up in the analyzer and the results were 
stored in two files: one with the analyzed forms and another containing the 
unanalyzed forms. The unanalyzed forms were re-examined for further 
consideration into the morphological system. 

The following table presents results of RUNYAGRAM: 
 

Corpus 3971 tokens Percentage 
Analyzed forms  4604 86% 
Non-analyzed forms  559 14% 
Precision  
(correctly analyzed) 

3820 82% 

 
Table 3. Testing Results. 
 
The above results indicate that the verb system of R-R in its current 
development has so far registered success by analyzing 86% of running text. 

Corpus Lookup Output

Morphological System

Unanalyzed 
forms 

Analyzed 
forms 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 17

The precision for the system is at 82%. This is a positive remark on the ability of 
fsm2 to analyze verb morphology of R-R.  
 
 
7. CONCLUSION AND FUTURE RESEARCH      
 
This work demonstrates the application of finite state approach in the analysis of 
Runyakitara verb morphology. Language specific knowledge and insight have 
been applied to classify and describe the morphological structure of the 
language, and quasi context-free and rewriting rules have been written to 
account for grammatical verbs of Runyakitara. 

The research results presented above describe the first efforts aimed at 
building a morphological analyser of Runyakitara, a Bantu language.  
RUNYAGRAM results from the combination of Item-and-Arrangement and 
Item-and-Process models as proposed by Hockett, (1954; 1959). It is evident 
that the models are applicable to Runyakitara morphology. 

Specifically, this work demonstrates: 
1. The first computational description of the orthography of the 

Runyakitara verbs 
2. A proof that the fsm2-based approach (context-free grammar + 

rewriting rules) is applicable to a morphologically complex Bantu 
language like R-R. 

3. An enrichment of the common Bantu template to account for the more 
specific situation in R-R. 

 
Future research: the entire plan for this research is to cater for all Runyakitara 
word categories to be analyzed by fsm2.  This will result into a comprehensive 
morphological analyser of Runyakitara. The morphological analyzer will be an 
input for many other planned applications such as learning systems and machine 
translation.   
 
 
ACKNOWLEDGMENTS 
 
The authors would like to acknowledge the continued support and expert advice 
of Prof. Arvi Hurskainen (Helsinki, Finland) and Prof. John Nerbonne 
(University of Groningen, The Netherlands). We are especially grateful to an 
anonymous reviewer for his elaborate and astute comments on an earlier version 
of this paper. Finally, we would like to thank the editor, Axel Fleisch, for his 
work.    

This paper is a result of the six month visiting research period in Germany 
that was supported by DAAD (The German Academic Exchange Service). We 
are grateful. 
 



Nordic Journal of African Studies 

 18

REFERENCES 
 
Beesley, K.R. & Karttunen, L. 2003. 

Finite state morphology. CSLI Publications. 
Bernsten, J. 1998. 

Runyakitara, Uganda’s ‘New’ Language. Journal of multilingual 
and multicultural development 19(2): 93-107. 

Cormen, T.H. & Leiserson, C.E. & Rivest, R.L. & Stein, C. 2001. 
Introduction to Algorithms. 2nd Edition. Cambridge, Mass.: MIT Press. 

Elwell, R. 2005. 
‘Finite-state Methods for Bantu Verb Morphology’. In: Nicholas 
Gaylord, Stephen Hilderbrand, Heeyoung Lyu, Alexis Palmer and 
Elias Ponvert (eds.), Texas Linguistics Society 10: Computational 
Linguistics for Less-Studied Languages. CSLI Publications. 

Guthrie, M. 1967. 
An Introduction to the Comparative Linguistics and the Pre-history of 
Bantu Languages. Gregg International Publishers Ltd. 

Hayman, 2007. 
‘Niger Congo Verb Extension: Overview and Discussion’. In: Doris 
L. Payne and Jaime Peña (eds.), Selected Proceedings of the 37th 
Annual Conference on African Linguistics, pp. 149-163. Somerville, 
MA: Cascadilla Proceedings Project. 

Hanneforth, T. 2009. 
‘fsm2 - A Scripting Language for Creating Weighted Finite-state 
Morphologies’. In: C. Mahlow & Piotrowski (eds.), State of the Art in 
Computational Morphology, pp. 48-63. Heidelberg: Springer Berlin.  

Hockett, C.F. 1954. 
Two Levels of Grammatical Description. Word 10: 210-31. 

  1958 A course in Modern Linguistics. New York, MacMillan. 
Hopcroft, J.E. & Ullman, J.D. 1979. 

Introduction to Automata Theory, Languages, and Computation. 
Addison-Wesley Publishing Company. 

Hurskainen, A. 2004. 
Swahili Language Manager: a Storehouse for Developing Multiple 
Computational Applications. Nordic Journal of African Studies 
13(3): 363-397. 

  1992 A Two-level Computer Formalism for the Analysis of Bantu 
Morphology: an Application to Swahili. Nordic Journal of African 
Studies 1(1): 87-119. 

 1996 ‘Disambiguation of morphological analysis in Bantu languages’. 
Proceedings of COLING-96, pp. 568-573. 

Kaplan R.M. & Kay M. 1994. 
Regular Models of Phonological Rule Systems. Computational 
Linguistics 20(3): 331-378. 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 19

Karttunen, L. 2003.  
‘Computing with Realizational Morphology’. In: Alexander Gulbekh 
(ed.), Computational Linguistics and Intelligent Text Processing, pp. 
205-216. Lecture Notes in Computer Science, 2588. 

Karttunen, L. & Beesley, K.R. 2005. 
‘Twenty-five years of Finite-State Morphology’. In: Inquiries into 
Words. A Festschrift for Kimmo Koskenniemi on his 60th Birthday. 
CSLI Studies in Computational Linguistics. Stanford CA: CSLI 2005: 
71-83. 

Katamba, F. 1984. 
A Non-linear Analysis of Vowel Harmony in Luganda. Journal of 
Linguistics 20(2): 257-275. 

Koskenniemi, K. 1984. 
‘A General Computational Model for Word Form Recognition and 
Production’.  Proceedings of COLING, pp. 178-181. 

Maho, J.F. 2007. 
‘A Linear Ordering of TAM/NEG Markers in the Bantu Languages’. 
SOAS working papers in linguistics, Vol. 15, pp. 213-225. 

Mohri, M. & Pereira F.C.N. 1996. 
Dynamic Compilation of Weighted Context-free Grammars. AT&T 
Labs – Research. 

Morris & Kirwan, 1972. 
A Runyakore Grammar. Kampala: East African Literature Bureau. 

Muhirwe, J. & Trosterud, T. 2008.   
‘Finite State Solutions for Reduplication in Kinyarwanda Language’. 
Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged 
Languages, pp. 73–80, Hyderabad, India, January 2008. Asian 
Federation of Natural Language Processing. 

Roark, B. & Sproat, R. 2007. 
Computational Approaches to Morphology and Syntax. Oxford 
University Press. 

Nurse, D. & Philippson, G. 2003. 
The Bantu languages. Routledge Language Series. 

Pretorius, L. & Bosch, E.S. 2003. 
Finite-State Computational Morphology: An analyzer prototype for 
Zulu. Machine Translation 18(3): 195-216. 

Pretorious, R., Berg, A. & Pretorious, L. 2009. 
‘Setswana Tokenisation and Computational Verb Morphology: Facing 
the Challenge of a Disjunctive Orthography’. Proceedings of the 
EACL 2009 Workshop on Language Technologies for African 
Languages – AfLaT 2009, pages 66–73, Athens, Greece, 31 March 
2009. 

Spencer, A. 1991. 
Morphological Theory. Wiley-Blackwell publishers. 

 



Nordic Journal of African Studies 

 20

Taylor, C. 1985. 
Descriptive Grammars, Nkore-Kiga. London, Groom Helm. 

Wintner, S. 2008. 
Strengths and Weaknesses of Finite-state Technology: A Case Study in 
Morphological Grammar Development.  Natural Language 
Engineering 14(4)  (October 2008): 457-469. 

Yona, S. & Wintner, S. 2005. 
A Finite State morphological grammar for Hebrew. Proceedings of the 
ACL Workshop on Computational Approaches to Semitic Languages, 
pp. 9-16. 

 
 
About the authors: Fridah Katushemererwe is an Assistant Lecturer at the 
Institute of Languages, Makerere University and a PhD student at the Faculty of 
Computing and Information Technology, Makerere University. Currently 
researching in the area of Intelligent Computer Assisted Language Learning 
Systems (ICALLs) specifically, utilizing natural language processing techniques 
to develop an ICALL for Runyakitara. Dr. Thomas Hanneforth is an Associate 
professor for computational linguistics at the Linguistics Dept. at Potsdam 
University. 



Finite State Methods in Morphological Analysis of Runyakitara Verbs 

 21

APPENDIX A – DETAILED DESCRIPTION OF RUNYAKITARA 
MORPHOLOGY 

 
Slot  Meaning  morpheme Word formed Gloss  

0 Verb root Vroot  gyend-a go 

1 Verb extensions 
(VEXT) 

Ca – causative (es) 
Apl – applicative (er) 
Rec – reciprocal (an) 
Pas – passive (w) 
Int – intensive (erer) 
Stat – stative (ek) 
Rev - reversive  
 

gyend-es-a 
gyend-er-a 
gyend-an-a 
reeb-w-a 
gyend-erer-a 
gyend-ek-a 
teek-uur-a 
Also possible: 
gyend-es-ebw-a 
gyend-an-is-a 
gyend-an-is-ibw-a 

make to go 
go for 
go with 
be seen 
go specifically for 
- 
remove (on stack) 

2 Verb end (VE) Ind – indicative (a) 
Subj – subjunctive (e) 
Past – past tense (ire) 

y-aa-gyend-a 
n-gyend-e 
n-gyenz-ire 

he has gone 
may I go 
I went 

3 Post final  Pf1 – adverbial (ho, yo, mu) 
Pf2 – mitigator (ga) 

gyend-a-yo 
ti-n-ka-gyend-a-ga 

go there 
I have never gone 
 

4 Aspect marker Asp – reflexive (e) ku-e-reeb-a to see oneself 

5 Object pronouns  Op1 – object pronouns (18) 
Op2 – object pronouns (18) 
 

ba-gyend-e 
mu-mu-n-reeb-er-e 

Let them go 
You see him for me 

6 Tense/aspect 
markers 

Inf – infinitive (ku) 
Hab – habitual (ø) 
Pf – perfective (aa) 
Ff – far future (ria/rya) 
Rp – remote past (ka) 

ku-gyend-a 
n-gyend-a 
n-aa-gyend-a 
n-dya-gyend-a 
n-ka-gyend-a 

to go 
I go (everyday) 
I have gone 
I will go (far future) 
I went (last year) 

7 Negation 
marker 

Neg2 – negative (ta) ku-ta-gyend-a not to go 

8 Subject 
pronouns 

Sp – subject pronouns (18) n-aa-gyenda 
tw-a-gyend-a 

I have gone 
we have gone 

9 Aspect marker Asp – progressive (ni) ni-ba-gyenda they are going (now) 

10 Negation 
marker 

Neg1 – negative 1 (ti) ti-baa-gyend-a they have not gone 

 
 



Nordic Journal of African Studies 

 22

APPENDIX B – FSM2 SCRIPT FOR CREATING THE VERBAL 
ANALYZER 

 
# Define a macro mapping verb equivalence class symbols (%SYMBOL%) 
# to sublexicons stored in a file called %SYMBOL%.lex. 
macro verb_substitution(%SYMBOL%) 
  load lexicon %SYMBOL%.lex 
  optimize 
  map %SYMBOL% 
endmacro 
 
# Load symbol signature 
load symspec ../../symbols/rr.sym 
 
# Load all verb roots stored in a number of files and associate them 
# with a symbol denoting the verb’s equivalence class (VERBFORMx). 
# This creates a substitution map associating each verb class with  
# the verb roots in this class 
 
call verb_substitution(VERBFORM1) 
call verb_substitution(VERBFORM2) 
call verb_substitution(VERBFORM3) 
call verb_substitution(VERBFORM4) 
call verb_substitution(VERBFORM5) 
call verb_substitution(VERBFORM6) 
call verb_substitution(VERBFORM7) 
call verb_substitution(VERBFORM8) 
 
# Compile the verb subgrammar and optimize it 
load grammar verbs 
optimize 
 
# Perform the verb root substitution and optimize the result 
substitute 
optimize 
 
# Compile the rewriting rules  
# and compose them with the result of the step before 
load contextrules verbs.rules 
compose 
 
# Delete all the category information from the lower tape 
regex "[<category>] ‐‐> []" 
compose 
 
# Finally, swap input and output tape of the transducer 
invert 
optimize 
 


